Peripheral Wiener Index of a Graph
Authors
Abstract:
The eccentricity of a vertex $v$ is the maximum distance between $v$ and anyother vertex. A vertex with maximum eccentricity is called a peripheral vertex.The peripheral Wiener index $ PW(G)$ of a graph $G$ is defined as the sum ofthe distances between all pairs of peripheral vertices of $G.$ In this paper, weinitiate the study of the peripheral Wiener index and we investigate its basicproperties. In particular, we determine the peripheral Wiener index of thecartesian product of two graphs and trees.
similar resources
The edge-Wiener index of a graph
If G is a connected graph, then the distance between two edges is, by definition, the distance between the corresponding vertices of the line graph of G. The edge-Wiener index We of G is then equal to the sum of distances between all pairs of edges of G. We give bounds on We in terms of order and size. In particular we prove the asymptotically sharp upper bound We(G) ≤ 25 55 n5 + O(n9/2) for gr...
full textThe Generalized Wiener Polarity Index of some Graph Operations
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
full texton wiener index of graph complements
let $g$ be an $(n,m)$-graph. we say that $g$ has property $(ast)$if for every pair of its adjacent vertices $x$ and $y$, thereexists a vertex $z$, such that $z$ is not adjacentto either $x$ or $y$. if the graph $g$ has property $(ast)$, thenits complement $overline g$ is connected, has diameter 2, and itswiener index is equal to $binom{n}{2}+m$, i.e., the wiener indexis insensitive of any other...
full textsteiner wiener index of graph products
the wiener index $w(g)$ of a connected graph $g$ is defined as $w(g)=sum_{u,vin v(g)}d_g(u,v)$ where $d_g(u,v)$ is the distance between the vertices $u$ and $v$ of $g$. for $ssubseteq v(g)$, the {it steiner distance/} $d(s)$ of the vertices of $s$ is the minimum size of a connected subgraph of $g$ whose vertex set is $s$. the {it $k$-th steiner wiener index/} $sw_k(g)$ of $g$ ...
full textSteiner Wiener Index of Graph Products
The Wiener index W (G) of a connected graph G is defined as W (G) = ∑ u,v∈V (G) dG(u, v) where dG(u, v) is the distance between the vertices u and v of G. For S ⊆ V (G), the Steiner distance d(S) of the vertices of S is the minimum size of a connected subgraph of G whose vertex set is S. The k-th Steiner Wiener index SWk(G) of G is defined as SWk(G) = ∑ S⊆V (G) |S|=k d(S). We establish expressi...
full textOn Wiener Index of Graph Complements
Let G be an (n, m)-graph. We say that G has property (∗) if for every pair of its adjacent vertices x and y, there exists a vertex z, such that z is not adjacent to either x or y. If the graph G has property (∗), then its complement G is connected, has diameter 2, and its Wiener index is equal to ( n 2 ) + m, i.e., the Wiener index is insensitive of any other structural details of the graph G. ...
full textMy Resources
Journal title
volume 2 issue 1
pages 43- 56
publication date 2017-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023